Imidazoles Induce Reactive Oxygen Species in Mycobacterium tuberculosis Which Is Not Associated with Cell Death
نویسندگان
چکیده
Azoles are a class of antimicrobial drugs used clinically to treat yeast and fungal infections. Against pathogenic yeast and fungi, azoles act by inhibiting the activity of the cytochrome P450 Cyp51, which is involved in the synthesis of a critical component of the yeast and fungal cell membrane. Azoles have antibacterial activity, including against mycobacteria, but the basis for this activity is not well-understood. We demonstrated that imidazoles are bactericidal to Mycobacterium tuberculosis. A marked increase in reactive oxygen species (ROS) was observed within imidazole-treated M. tuberculosis. The generation of ROS did not appear to be related to the mechanism of killing of imidazoles, as the addition of antioxidants or altered expression of detoxifying enzymes had no effect on growth. We examined the metabolic changes induced by econazole treatment in both wild-type and econazole-resistant mutant strains of M. tuberculosis. Econazole treatment induced changes in carbohydrates, amino acids, and energy metabolism in both strains. Notably, the untreated mutant strain had a metabolic profile similar to the wild-type drug-treated cells, suggesting that adaptation to similar stresses may play a role in econazole resistance.
منابع مشابه
نقش استرس اکسیداتیو در تکثیر بیرویه و مرگ سلولی
Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملRole of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کامل